Generalized Q-functions and Dirichlet-to-neumann Maps for Elliptic Differential Operators
نویسندگان
چکیده
The classical concept of Q-functions associated to symmetric and selfadjoint operators due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential equations can be interpreted as a generalized Q-function. For couplings of uniformly elliptic second order differential expression on bounded and unbounded domains explicit Krein type formulas for the difference of the resolvents and trace formulas in an H-framework are obtained.
منابع مشابه
An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملThe domain of analyticity of Dirichlet–Neumann operators
Dirichlet–Neumann operators arise in many applications in the sciences, and this has inspired a number of studies on their analytical properties. In this paper we further investigate the analyticity properties of Dirichlet–Neumann operators as functions of the boundary shape. In particular, we study the size of the disc of convergence of their Taylor-series representation. For this we use a com...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملThe Connections between Dirichlet, Regularity and Neumann Problems for Second Order Elliptic Operators with Complex Bounded Measurable Coefficients
The present paper discusses the relations between regularity, Dirichlet, and Neumann problems. Among other results, we prove that the solvability of the regularity problem does not imply the solvability of the dual Dirichlet problem for general elliptic operators with complex bounded measurable coefficients. This is strikingly different from the case of real operators, for which such an implica...
متن کامل